# Kinetics <br> A molecular look!! Take out worksheet!!! <br> Created by Schweitzer 03/03/2003 

## unimolecular

- unimolecular - rearrangement of a molecule


## unimolecular

- Is reaction exothermic or endothermic
- $\Delta \mathrm{H}=$ ?
- $\Delta \mathrm{Ea}=$ ?



## Unimolecular Energy of activation



## Energy of Activation

- Energy needed to start a Reaction
- The higher the energy of reaction the slower the rate.
- Graphically
- Start to peak energy
- Catalyst- Speed up reactions by lowering activation energy


## Temperature \& Reaction Rate Maxwell's distribution

Energy distribution curves


## Unimolecular

## Change in Heat energy

 $\Delta \mathbf{H}$

## Change in energy

## $\Delta \mathbf{H}$

1. Energy can not be created nor destroyed
2. What ever energy is lost will be gained with the reverse reaction and vise-versa
3. $\Delta \mathrm{H}$ measures change in heat. Which is thermal energy. Since most of our reactions do not give off nuclear any other significant forms of energy heat can usually represent all energy.
4. $-\Delta H=$ exothermic; system loosing energy to the surrounding
5. $+\Delta \mathrm{H}=$ endothermic; system taking energy from surroundings

## bimolecular

- bimolecular - reaction involving the collision of two particles



## bimolecular

- Doubling
- bimolecular concentration of each substance will cause reaction rate to double.



## termolecular

- termolecular - reaction involving the collision of three particles
- In order for a reaction to be termolecular 3 substances will need to collide instantaneously.


## Which reaction is the fastest?



Reaction Coordinate $\longrightarrow$

# Catalyst Lower activation energy 

- substance which speeds up the rate of a reaction while not being consumed
Homogeneous Catalysis - a catalyst which is in the same phase as the reactants
Heterogeneous Catalysis - a catalyst which is in the different phase as the reactants
catalytic converter
- solid catalyst working on gaseous materials


## Un-catalyzed vs. Catalyzed Note: each bump stands for a reaction

## Energy profile for enzyme-catalyzed reaction

Uncatalyzed reaction


Reaction progress

Enzyme-catalyzed reaction


Reaction progress

## Reaction Mechanism

- A set of elementary reactions which represent the overall reaction
- Catalyst: Are not consumed and will not show up in overall reaction
- Intermediate: Species produced and consumed with in a reaction. Will not show up in overall reaction.
- $\Delta \mathrm{H}$ and Keq values add as well.


## How many elementary steps ?

## Energy profiles for catalyzed and uncatalyzed reactions



Reaction progress

## Reaction mechanisms and rate of reaction.

- The slowest rate controls the rate of reaction.
- Example: Hwy. 45 at either 7:40am or $3: 15 \mathrm{pm}$. What controls rate of traffic.
- Actual time or rate = limiting rate + any time after.


## Rate equation for elementary reaction

- $A \rightarrow B+C$
- Doubling concentration of A will double reaction rate
- Rate = k[A]


## Rate equation for elementary reaction

- $A+B \rightarrow C+D$
- Rate $=k[A][B]$
- Each individual is $1^{\text {st }}$ order but the reaction is second order overall.
- Doubling the concentration of each will quadruple the rate.


## Rate equation for elementary reaction

- $A+B+C \rightarrow D+E$
- Rate $=k[A][B][C]$
- Each individual is $1^{\text {st }}$ order but the reaction is $3^{\text {rd }}$ order overall.


## Rate equation for rate determining step

- $\mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F}$ (slow step)
- $\mathrm{F}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{2} \mathrm{~F}$ (Fast)
- $2 \mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}$
*Rate equation can be written from rate determining step.
Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]$
* Any $\mathrm{NO}_{2}$ add for second reaction will not affect rate.


## Practice

- $\mathrm{O}_{3}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{3}+\mathrm{O}_{2}$ (slow)
- $\mathrm{NO}_{3}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}$ (fast)
- Overall reaction please
- $\mathrm{O}_{3}+2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2}$
- Please write Rate law
- Rate $=k\left[\mathrm{O}_{3}\right]\left[\mathrm{NO}_{2}\right]$


## Practice,

## write the rate equation!

- $2 \mathrm{~N}_{2} \mathrm{O}_{5} \leftrightarrow 2 \mathrm{NO}_{2}+2 \mathrm{NO}_{3}$ (fast, equilibrium)
- $\mathrm{NO}_{2}+\mathrm{NO}_{3} \rightarrow \mathrm{NO}+\mathrm{NO}_{2}+\mathrm{O}_{2}$ (slow)
- $\mathrm{NO}_{3}+\mathrm{NO} \rightarrow 2 \mathrm{NO}_{2}$ (fast)
- Determine rate equation
- *** you can not use intermediate in reaction equation***


## Practice,

## write the rate equation!

- $2 \mathrm{~N}_{2} \mathrm{O}_{5} \leftrightarrow 2 \mathrm{NO}_{2}+2 \mathrm{NO}_{3}$ (fast, equilibrium)
- $\mathrm{NO}_{2}+\mathrm{NO}_{3} \rightarrow \mathrm{NO}+\mathrm{NO}_{2}+\mathrm{O}_{2}$ (slow)
- $\mathrm{NO}_{3}+\mathrm{NO} \rightarrow 2 \mathrm{NO}_{2}$ (fast)
- $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
- Determine rate equation
- *** you can not use intermediate in reaction equation***
- Rate $=\mathrm{K}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}$


## $1^{\text {st }}$ practice question \#4

$\operatorname{Br} 2(\mathrm{~g}) ~-->2 \mathrm{Br}(\mathrm{g})$<br>fast<br>$\mathrm{Br}(\mathrm{g})+\mathrm{H} 2(\mathrm{~g})-->\mathrm{HBr}(\mathrm{g})+\mathrm{H}(\mathrm{g}) \quad$ slow<br>$\mathrm{H}(\mathrm{g})+\mathrm{Br}(\mathrm{g})$--> $\mathrm{HBr}(\mathrm{g})$<br>fast

Write overall equation, indicate intermediates and write the rate law.

## Write overall equation

# $\mathrm{Br} 2(\mathrm{~g}) \rightarrow 2 \mathrm{Br}(\mathrm{g})$ <br> $\mathrm{Br}(\mathrm{g})+\mathrm{H} 2(\mathrm{~g}) \rightarrow \mathrm{HBr}(\mathrm{g})+\mathrm{H}(\mathrm{g})$ <br> $\mathrm{H}(\mathrm{g})+\mathrm{Br}(\mathrm{g}) \rightarrow \mathrm{HBr}(\mathrm{g})$ <br> <br> fast <br> <br> fast <br> slow <br> fast 

$\mathrm{Br} 2(\mathrm{~g})+2 \mathrm{Br}(\mathrm{g})+\mathrm{H} 2(\mathrm{~g})+\mathrm{H}(\mathrm{g}) \rightarrow 2 \mathrm{Br}(\mathrm{g})+\mathrm{HBr}(\mathrm{g})+\mathrm{H}(\mathrm{g})+\mathrm{HBr}(\mathrm{g})$
Put all reactants and all products on one equation. Combining like terms.

$$
\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{H} 2(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{~g})
$$

## Write overall equation

# $\mathrm{Br} 2(\mathrm{~g}) \rightarrow 2 \mathrm{Br}(\mathrm{g}) \quad$ fast <br> $\mathrm{Br}(\mathrm{g})+\mathrm{H} 2(\mathrm{~g}) \rightarrow \mathrm{HBr}(\mathrm{g})+\mathrm{H}(\mathrm{g}) \quad$ slow <br> $\mathrm{H}(\mathrm{g})+\mathrm{Br}(\mathrm{g}) \rightarrow \mathrm{HBr}(\mathrm{g})$ <br> fast 

$$
\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{H} 2(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{~g})
$$

Write a rate law. Add all reactants.
Rate $=\mathrm{k}[\mathrm{Br}]^{?}\left[\mathrm{H}_{2}\right]^{?}$
**If reactant is zero order it is quite often left off the rate law.**

## Write overall equation

# $\mathrm{Br} 2(\mathrm{~g}) \rightarrow 2 \mathrm{Br}(\mathrm{g})$ <br> $\mathrm{Br}(\mathrm{g})+\underline{\mathrm{H} 2(\mathrm{~g})} \rightarrow \mathrm{HBr}(\mathrm{g})+\mathrm{H}(\mathrm{g})$ <br> $\mathrm{H}(\mathrm{g})+\mathrm{Br}(\mathrm{g}) \rightarrow \mathrm{HBr}(\mathrm{g})$ <br> fast <br> slow <br> fast 

$$
\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{H} 2(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{~g})
$$

Rate $=\mathrm{k}[\mathrm{Br}]^{1}\left[\mathrm{H}_{2}\right]^{1}$
What are the orders (?) The slow reaction and anything that feeds the slow reaction is what determines orders. What do we have?

$$
\begin{gathered}
5 \mathrm{Br}^{-}{ }_{(\mathrm{aq})}+\mathrm{BrO}_{3}^{-}{ }^{-}\left(\mathrm{aq)}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 3 \mathrm{Br}_{2(1)}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right. \\
R \mathrm{Rate}=\mathrm{k}[\mathrm{Br}]\left[\mathrm{BrO}_{3}\right]\left[\mathrm{H}^{+}\right]^{2}
\end{gathered}
$$

One proposed reaction mechanism has three steps up to and including the slow step. The $1^{\text {st }}$ step of this reaction is:

$$
\mathrm{Br}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Int}_{1}
$$

Which of the following could be the next two steps in the mechanism?
a. $\operatorname{Int}_{1}+\mathrm{H}^{+} \rightarrow \operatorname{Int}_{2} \quad:$
b. $\mathrm{Int}_{1}+\mathrm{BrO}_{3}^{-} \rightarrow \mathrm{Int}_{2}$ :
c. $\mathrm{Int}_{1}+\mathrm{H}^{+} \rightarrow \mathrm{Int}_{2}$
d. $\mathrm{Int}_{1}+\mathrm{BrO}_{3}{ }^{-} \rightarrow \mathrm{Int}_{2}$ :
e. $\mathrm{Int}_{1}+\mathrm{Br}^{-} \rightarrow \mathrm{Int}_{2}$
$\mathrm{Int}_{2+} \mathrm{Br}^{-} \rightarrow \mathrm{Int}_{3}$
$\mathrm{Int}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{Int}_{3}$
$\mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-} \rightarrow \mathrm{Int}_{3}$
$\mathrm{Int}_{2}+\mathrm{Br}^{-} \rightarrow \mathrm{Int}_{3}$
$\mathrm{Int}_{2}+\mathrm{BrO}_{3}^{-} \rightarrow \mathrm{Int}_{3}$

$$
\begin{gathered}
5 \mathrm{Br}^{-}{ }_{(\mathrm{aq})}+\mathrm{BrO}_{3^{-}}{ }^{\text {(aq) })}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 3 \mathrm{Br}_{2(1)}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
\mathrm{Rate}=\mathrm{k}[\mathrm{Br}]\left[\mathrm{BrO}_{3}\right]\left[\mathrm{H}^{+}\right]^{2}{ }^{2}
\end{gathered}
$$

One proposed reaction mechanism has three steps up to and including the slow step. The $1^{\text {st }}$ step of this reaction is:

$$
\mathrm{Br}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Int}_{1}
$$

Which of the following could be the next two steps in the mechanism?
a. $\operatorname{Int}_{1}+\mathrm{H}^{+} \rightarrow \operatorname{Int}_{2} \quad:$
b. $\mathrm{Int}_{1}+\mathrm{BrO}_{3}^{-} \rightarrow \mathrm{Int}_{2}$ :
c. $\mathrm{Int}_{1}+\mathrm{H}^{+} \rightarrow \mathrm{Int}_{2}$
d. $\mathrm{Int}_{1}+\mathrm{BrO}_{3}{ }^{-} \rightarrow \mathrm{Int}_{2}$ :
e. $\mathrm{Int}_{1}+\mathrm{Br}^{-} \rightarrow \mathrm{Int}_{2}$
$\mathrm{Int}_{2+} \mathrm{Br}^{-} \rightarrow \mathrm{Int}_{3}$
$\mathrm{Int}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{Int}_{3}$
$\mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-} \rightarrow \mathrm{Int}_{3}$
$\mathrm{Int}_{2}+\mathrm{Br}^{-} \rightarrow \mathrm{Int}_{3}$
$\mathrm{Int}_{2}+\mathrm{BrO}_{3}^{-} \rightarrow \mathrm{Int}_{3}$
$5 \mathrm{Br}^{-}{ }_{(\mathrm{aq})}+\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq})+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 3 \mathrm{Br}_{2(\mathrm{I})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$ Rate $=\mathrm{k}[\mathrm{Br}]\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$

The overall order of this reaction is
a. 2
b. 3
c. 4
d. 6
e. 12
$5 \mathrm{Br}^{-}{ }_{(\mathrm{aq})}+\mathrm{BrO}_{3}{ }^{-}{ }_{(\text {aq) }}+6 \mathrm{H}^{+}{ }_{(\text {aq) }} \rightarrow 3 \mathrm{Br}_{2(1)}+3 \mathrm{H}_{2} \mathrm{O}_{(1)}$
Rate $=\mathrm{k}[\mathrm{Br}]\left[\mathrm{BrO}_{3}-\right]\left[\mathrm{H}^{+}\right]^{2}$

The overall order of this reaction is
a. 2
b. 3
c. 4
d. 6
e. 12
$5 \mathrm{Br}^{-}{ }_{(\mathrm{aq})}+\mathrm{BrO}_{3}^{-}{ }_{(\mathrm{aq})}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 3 \mathrm{Br}_{2(\mathrm{ll}}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Rate $=\mathrm{k}[\mathrm{Br}]\left[\mathrm{BrO}_{3}\right]\left[\mathrm{H}^{+}\right]^{2}$

- What is the effect of increasing $\left[\mathrm{H}^{+}\right]$in this reaction system?
a. The value of the rate constant increases.
b. The potential energy of the products decreases.
c. The potential energy of the activated complex decreases.
d. The number of collisions between $\mathrm{H}^{+}$and $\mathrm{Br}^{-}$ ions increases.
e. The effectiveness of collisions between $\mathrm{H}^{+}$and Br ions increases.
$5 \mathrm{Br}^{-}{ }_{(\mathrm{aq})}+\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq})+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 3 \mathrm{Br}_{2(\mathrm{ll})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ Rate $=\mathrm{k}[\mathrm{Br}]\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$
- What is the effect of increasing $\left[\mathrm{H}^{+}\right]$in this reaction system?
a. The value of the rate constant increases.
b. The potential energy of the products decreases.
c. The potential energy of the activated complex decreases.
d. The number of collisions between $\mathrm{H}^{+}$and $\mathrm{Br}^{-}$ ions increases.
e. The effectiveness of collisions between $\mathrm{H}^{+}$and Br ions increases.

$$
\begin{aligned}
& 5 \mathrm{Br}^{-}{ }_{(\mathrm{aq})}+\mathrm{BrO}_{3}^{-}{ }_{(\text {aq) }}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 3 \mathrm{Br}_{2(1)}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \text { Rate }=\mathrm{k}[\mathrm{Br}]\left[\mathrm{BrO}_{3}\right]\left[\mathrm{H}^{+}\right]^{2}
\end{aligned}
$$

What is the effect of adding $\mathrm{Br}_{2}(\mathrm{I})$ to the system?
I. The mass of the system increases.
II. The rate of the reduction of $\mathrm{BrO}_{3}{ }^{-}$increases.
III. The rate of the oxidation of $\mathrm{Br}^{-}$decreases.

